Donaldson invariants of product ruled surfaces and two-dimensional gauge theories

نویسندگان

  • Carlos Lozano
  • Marcos Mariño
چکیده

Using the u-plane integral of Moore and Witten, we derive a simple expression for the Donaldson invariants of product ruled surfaces Σg × S, where Σg is a Riemann surface of genus g. This expression generalizes a theorem of Morgan and Szabó for g = 1 to any genus g. We give two applications of our results: (1) We derive Thaddeus’ formulae for the intersection pairings on the moduli space of rank two stable bundles over a Riemann surface. (2) We derive the eigenvalue spectrum of the Fukaya-Floer cohomology of Σg×S.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duality and Topological Quantum Field Theory *

We present a summary of the applications of duality to Donaldson-Witten theory and its generalizations. Special emphasis is made on the computation of Don-aldson invariants in terms of Seiberg-Witten invariants using recent results in N = 2 supersymmetric gauge theory. A brief account on the invariants obtained in the theory of non-abelian monopoles is also presented. Topological quantum field ...

متن کامل

Topological Quantum Field Theory and Four-Manifolds

I review some recent results on four-manifold invariants which have been obtained in the context of topological quantum field theory. I focus on three different aspects: (a) the computation of correlation functions, which give explicit results for the Donaldson invariants of non-simply connected manifolds, and for generalizations of these invariants to the gauge group SU(N); (b) compactificatio...

متن کامل

The Geometry of Supersymmetric Gauge Theories in Four Dimensions

We review the relations between (twisted) supersymmetric gauge theories in four dimensions and moduli problems in four-dimensional topology, and we study in detail the non-abelian monopole equations from this point of view. The relevance of exact results in N = 1 and N = 2 supersymmetric gauge theories to the computation of topological invariants is emphasized. Some background material is provi...

متن کامل

Instantons, Topological Strings, and Enumerative Geometry

We review and elaborate on certain aspects of the connections between instanton counting in maximally supersymmetric gauge theories and the computation of enumerative invariants of smooth varieties. We study in detail three instances of gauge theories in six, four, and two dimensions which naturally arise in the context of topological string theory on certain noncompact threefolds. We describe ...

متن کامل

What Do Topologists Want from Seiberg–witten Theory? Received (day Month Year) Revised (day Month Year)

In 1983, Donaldson shocked the topology world by using instantons from physics to prove new theorems about four-dimensional manifolds, and he developed new topological invariants. In 1988, Witten showed how these invariants could be obtained by correlation functions for a twisted N = 2 SUSY gauge theory. In 1994, Seiberg andWitten discovered dualities for such theories, and in particular, devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999